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Abstract—Convective weather is responsible for large delays and ance demand for air traffic operations and the availableatapa

widespread disruptionsin the U.S. National Airspace Systa (NAS),
especially during summer months when travel demand is highThis
has been the mativation for Air Traffic Flow Management (ATFM)
algorithms that optimize flight routes in the presence of rediced
airspace and airport capacities. These models assume eiththe
availability of reliable probabilistic weather forecasts or accurate
predictions of robust routes; unfortunately, such forecass do not
currently exist. This paper adopts a data-driven approach hat
identifies robust routes and derives stochastic capacity fecasts
from deterministic convective weather forecasts. Using thniques
from machine learning and extensive data sets of forecast anob-
served convective weather, the proposed approach classfieoutes
that are likely to be viable in reality. The resultant model for route
robustness can also be mapped into probabilistic airspaceapacity
forecasts.

Keywords- convective weather; air traffic management; igtation
of weather forecasts and air traffic management; route rolnsss;
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I. INTRODUCTION

ties of various airspace and airport resources. This relsdalts
broadly into the realm of Air Traffic Flow Management (ATFM),
which is the process of making strategic decisions a fewour
ahead of the time of operations, in order to balance the ddman
for, and capacity of, constrained NAS resources. Howeber, t
capacity of airspace resources is strongly influenced byiemhb
weather, since aircraft need to avoid hazardous atmosptari
ditions and may therefore be forced to deviate from theinpéal
trajectories. Traditionally, ATFM models handled the mese

of weather by assuming that the impact of weather on the ca-
pacity of a resource at any time was known, and used the de-
terministic estimates of capacity to route flights betwdwgirt
origins and destinations in order to minimize delays. \Masio
approaches have been adopted to solve the large scale zgtimi
tion problems that arise, including integer programmingrfo-
lations [4] and Eulerian models which treat the traffic asticon
uous flows [5, 6]. Algorithms have also been developed to effi-
ciently synthesize routes through regions of airspace ategh
by convective weather. These algorithms require fine-gdhin
and time-varying weather forecast data as static weatipeit,in
and focus on synthesizing short and easily flyable routestwhi

The increase in demand for air travel over the past few yedgsnot get too close to regions of airspace impacted by weathe
has been accompanied by an increase in congestion and ddlay8]. The challenge in using these deterministic appreach
in the National Airspace System (NAS) of the United Statas, alies in the fact that under clear weather conditions, deitsistic
has made the system more susceptible to weather disruptiéapacity estimates based on weather forecasts tend tolile sta
This problem is particularly intense during summer monthad tend to reflect the conditions that materialize; howawver
when travel demand is high and there are frequent thunaerstoder stormy weather conditions, capacity is highly varizdutel

(convective weather activity) over much of the continehte.

the use of the expected capacity for planning is unrealistic

It has been estimated by the Joint Economic Committee of therhe knowledge that weather forecasts are inherently umicert
U.S. Senate that domestic air traffic delays in 2007 cost tise Unotivated optimization approaches that assumed multgpac-
economy $41 billion [1]. It has also been estimated that%6.ty scenarios for airspace resources, with associatechpilities

of all delay in the NAS and 25% of all delayed flights in 2008f occurrence. These approaches then minimized the expecte
was weather-related [1, 2]. With the demand for air traffiemp value of delay in the system while trying to route aircraftaso
ations expected to grow significantly over the next two desadto not violate capacity constraints [9]. More recently,ustop-

it has become increasingly important to develop approaittas timization approaches have been proposed that assume & set o

will enable the efficient operation of the airspace systemnén
the presence of convective weather [3].

A. Background and related work

possible capacity uncertainty values, and try to keep tetesy
safe for any possible realizations of the uncertainty [23]the
tactical level, prior research has assumed that convegtether
can be modeled as a dynamic stochastic process, and flighsrou

There has been much research over the past several decd@f@mined using dynamic programming.
on techniques to minimize air traffic delays and to better bal There have also been recent attempts at the problem of creat-



ing stochastic and deterministic models of capacity frorativer plicity, we consider the case of airports with well-definedval
forecasts. In [11], the authors considered the problem f eand departure gates through with most aircraft are routen. A
mating the capacity of a sector of en-route airspace by coémpustance of such an airport is Hartsfield Atlanta Internsiair-

ing a theoretical capacity given weather in the region. Was port (ATL), which uses four arrival gates in the NE, NW, SE and
done through the application of continuous maximum flow th8W corners, and four departure gates in the North, South, Eas
ory. This work relied on static weather forecasts and did rad West corners.

incorporate uncertainty intervals or any measure of fstae-

curacy. In [12], the authors extended this approach to tee o A.  Terminal-area model

weather forecasts accompanied by regions of uncertaimiw-H Consider the following version of the route robustness prob
ever, the uncertainty profiles were randomly generated,sby m, illustrated in Figure 1. The input is a terminal-aresfjiued
suming that the probability of a weather impacted regiongd@a by two concentric circles: an outer cird® of radiusR, and
ticular size was proportional to the intensity of the weafoee- an inner circleC; of radiusr. The outer circleCo represents the
cast in the region. In the terminal area environment, thet&®oyoints at which arriving aircraft first enter the terminaispiace,
Availability Planning Tool (RAPT) uses Lincoln Lab Convaet andR is typically 40 nautical miles, or 75 km. The inner circle
Weather Forecasts to model jet route blockage determialti C; represents the point at which aircraft start their final apph
The product is used operationally in the New York area atgpointo the airport. In contrast, departures traverse theitelarea

to help controllers determine if aircraft can take off ovelar in the reverse direction, entering it close to the airpofaand
tively short time horizons[13]. exiting it through the outer boundaBp.

B. Contributions of this paper
While the efforts described above assumed the existenee of r & Q

liable probabilistic weather (or capacity) forecasts, tterapts
have been made made to evaluate the quality of existing fore-
cast products nor their predictions, but instead the fatscsere
treated as ground truth. In contrast, this paper explicitigsid-

ers the problem of understanding and validating weathes-for
casts, and developing techniques that will help integragent
into ATM decision-making in a reliable and meaningful fash-
ion. We adopt a data-driven approach to achieving this ebjec
tive. We make use of state-of-the-art aviation convectigativer
forecasts, developed by MIT Lincoln Laboratory, to identi6-

bust routes, that is, routes that are likely to remain viabline &
actual weather that materializes. We consider variousifeat
(characteristics) of the forecast weather along arrivel depar- Figure 1:Model of terminal-area flows. Arrival flows enters througk thuter
ture routes, and identify features with high correlatiothwoute circle C, and flow into the inner circl&;, while departure flows (denoted by
blockage. Using techniques from machine learning, we geparey arrows) travel in the reverse direction. The red regepresents a forecast
potential classification algorithms that predict whethegiveen Weather hazard.

route is likely to be open or blocked in actual weather, baseds;en a route (for example, a path between an arrival gate
on the values of different features of the route, as deteﬁmirbnco and a point orC;, a weather forecast provides us with a
by the forecast. We compare these techniques with each OH}%Hiction of where the weather obstacles will be located, a
as well as the naive prediction (which would treat the f08€Cqnerefore a prediction of whether the route will remain ot. no

as ground truth, and classify a route as block_ed if it is ljémkaowever, we note that weather forecasts are not always atecur
in the forecast weather). We evaluate these different sues Figure 2 (left) shows an illustrative example: three patresiaid

using several metrics, such as the accuracy (the fractiomef "5 go_min weather forecast on the left; and the same paths
that the prediction is correct), the false positive rate (faction e raig on the observed weather for that scenario on tHe. rig
of time that we forecast that the route will be open but it &ngls \ya hotice that two of the three paths (denoted by blue lines) a

being closed), the false negative rate (the fraction ofithe that predicted to be open but are blocked by weather in realitjiewh

we forecast that the route will be closed, but instead it 1BM3he third (denoted by a red line) is forecast to be blocketlisu
viable), etc. open in the weather that actually materializes.

Il. PROBLEM DESCRIPTION B. Problem statement

In this section we formalize the problem of identifying rebu  The objective of this paper is to determine routes that ked/i
routes in the terminal area. We also introduce the Lincolb L# be robust to weather disruptions, by understanding acat4in
Convective Weather Forecast (CWF) and the dynamic foregastating the inherent uncertainty associated with wedibrer-
grid, used in constructing our route robustness model. iRor scasts. In other words, our problem can be stated as follows:



Path in Dynamic Forecast Grid Path fit into Observed Weather Grid 1 km
-

NIL 150 | 149 | 140 | 125 | 107 | 88 I1km

152 | 150 | 142 | 128 | 109 88

151 147 | 142 | 128 | 109 87

147 | 142 | 129 | 118 | 105 82

127 | 124 | 118 | 105 89

102 | 102 98 89
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. . ) Figure 3:Sample Lincoln Lab Convective Weather Forecast near ATL.
Figure 2:An example of forecast inaccuracy. The figure on the left shihe

forecast, while the corresponding observed weather is@night. We note that

two of the paths are forecast to be open but are blocked iity;eahile a third is . . .
forecast to be blocked but is open in reality. The 0-2 hour CWF consists of a grid of 1km x 1km pixels

covering a large portion of the NAS [15]. Each pixel contaans

predicted value of Vertically Integrated Liquid (VIL), irchted
Given a weather forecast for some time in the future and a sgtan integer value in the ran¢& 255. Figure 3 shows a sample
of predetermined potential routes, we would like to bestiifie forecast for ATL. These VIL values are divided into seven lev
those routes that are likely to be open in the actual weathar t els of convective activity, ranging from level 1 (minor) ®vel
materializes and also quantify the uncertainty associatéti 6 (very severe). A VIL value above a certain threshold (183, i

our prediction mechanism. practice) in the observed data corresponds to weather efigev
In the approach that we follow to solve this problem, we usevel 3 or higher, which is commonly considered to be hazasdo
the following definition for an open route. to pilots. A forecast has a horizon that spans every 5 mimite i

crement between 5 and 120 minutes, and is updated every 5 min-
Definition 1 A route is defined to bepenor clear in the ob- utes. In other words, at tini&), forecasts are available for time
served weather if there exists a route that is not impacted Q45 To+10, To+15,.. ., To+120. The forecast data is accom-
weather within a small neighborhood of the original route.  panied by observed VIL values for the same region of airspace

at that time, providing data that can be used for evaluatieg t
This relaxed definition allows for slight deviations in uality of the forecast.

planned route that reflect the “wiggle room” or the abilityaof
aircraft to make small adjustments to the planned route. The static CWF is useful in obtaining a general idea of what
This problem stated above is an important one from the wieather will look like, and is used in various decision suppo
traffic management perspective for several reasons. Fiastys tools by air traffic controllers and airlines. Lincoln Lals, aell
to capture trends in how the impact of observed weather @ other entities that develop forecast products, provally d
routes differs from predicted impact, rather than by singuiglu- statistics such as rates of false positives, false negataed a
ating forecasts using pixel-by-pixel comparisons [14c@w, it Skill score, but these are pixel-based, and often ad hos.irt-
takes into account the realities of scheduling aircraftesusuch portantto note that no large-scale historical evaluatidorecast
as the ability to allow small deviations from planned rowtét- accuracy for ATM decision-making has been performed so far.
out effecting operations. Third, this approach suggessith
the terminal-area, the theoretical capacity may not befacmift
metric to measure the impact of weather on air traffic flowg.[1

This is because while the theoretical capacity might ptetet To model aircraft moving through the terminal area, it's-nec

N aircraft will be able to enter airspace over the next hour,é'gsary to use a different time horizon for different airtyafsi-

may not ind_icate the possibility (.Which Is critical for plaing) tions. We achieve this dynamic weather grid by splicing tbge
that these aircraft must necessarily arrive from the Westhier- weather data for time instantghat increase from the outer to

morer,]|tr|]s pos.T,.lbltéfohr the thec;retlcal papacgy forecaspdac:lry inner circle for arrivals, and decrease from the outer teiruir-
match the realized theoretical capacity, and yet requaedi- -, ¢, departures. The distance between two concentigtesir

craft use trajectories that are very far from the originalnpled in the grid (shown in Figure 4) corresponds to the distaneerflo
routes. by a typical aircraftin 5 min.

P. Dynamic weather grid

C. Lincoln Lab’s Convective Weather Forecast Figure 4 contains a sample dynamic weather grid for arriv-

In order to assess the robustness of a route to the diffesenng aircraft. We assume aircraft arrive @ at timet, with a
between the forecast and actual weather, it is necessarsttedi to- minute time horizon. For departures, the corresponding dy
lect a weather forecast. This paper uses the state-ofrthidra namic grid assumes aircraft arrive@tat timet, with the same
coln Lab Convective Weather Forecast (CWF), which is brietiyminute time horizon. This grid will therefore be used foap!
described in this section. ning at the current time, namely, time- tg.



B. Route selection in the forecast grid

Potential aircraft trajectories through the forecast gfidach
weather scenario are generated by sampling eight straigtés
from Cy to C;, as depicted in Figure 5. These eight trajectories
representa sampling of routes through varying weathecésts.
Arrival trajectories point toward the inner circle, whileetdepar-
ture trajectories are oriented in the opposite direction.

NIL 0 1 2z 3 4 5 6

Figure 4 Sample forecast region for arrivals, created by splicingetber Figyre 5:Eight routes selected through a 60-minute departure fstscanario
consecutive 5-minute forecasts. This is for a 30-minute tirarizon on July 29, 5, June 12 2007 at 6AM at ATL.

2007, where aircraft reach the outer circle at time 21:00.

[1l. GENERATION OF DATA SETS C. \Validation of routes in the observed weather grid

As has been mentioned before, this paper adopts a datardrivdeach patiP generated in the manner described above is eval-
approach of identifying routes that are likely to be robesttte Uated using the observed weather data. A réute defined as
inaccuracies in the forecast. The approach is based on e lafgpenif there exists a corresponding route in the observed weathe
scale evaluation of the performance of the Convective WeatBd which is withinB km of P and does not pass through any ac-
Forecast, and the difference in predicted and observeddmpgtal weather hazards. Thizskm neighborhood allows for slight
on routes. An essential step is therefore the generatioheof Rerturbations in the path (of the order of several kilomster
necessary data sets, which consists of the selection afdsrewhich represents only a slight change from the original pégh
and observed weather scenarios, selection of potentiedband trajectory,P.
departure routes, and the validation of these routes inrebde Open routes are synthesized by solving the following modi-

weather, as described in this section. fied shortest-path problem through the dynamic grid of olesér
weather:
A. Selection of weather scenarios Construct a directed grapB(./,.</) such that the set of

nodes /" contains all pixels withirB km of P (in the dynamic

A dataset was created containing routes for several weaif)¢éerved weather grid) which are free of weather hazards, an
scenarios during each of the 18 most weather-impacted daysjch that each set of adjacent nodes form araarc as long
ATL during the months of June and July 2007, when ranked &G the arc moves towards the center. At tima unit of flow
cording to weather-related delays. is sent from a set of source nodgé = CoN .4 (the subset

Although the Lincoln Lab CWF data can be described as a nadi-nodes lying on the outer circl€p) to a set of sink nodes
trix of integers in the rangf, 255, the archives of this data are7 = .7 =C nN.#". For simplicity, we use a standard transforma-
kept in a proprietary format, and each day of data takes akvéion and introduce a supersoutgéand a supersink”, and route
hours to extract, yielding 30 GB of uncompressed binary.datae unit of flow between the two through the source nodes and
To identify convective weather scenarios for the ATL teratin sink nodes [16]. Define N, j) to be the nodé& € .#” which
area, the forecasts for the airspace surrounding ATL were eanstitutes a straight next arc (if, j) is used. In other words,
tracted and visualized for the entire two-month time period nodesi, j,k form a straight line in the observed weather grid,
identify the time periods with maximum convective weather apointing towards the center. The objective is to find the mini
tivity. This resulted in an average of 4 weather scenariosipg, mum cost flowf such that out of all minimum cost flow$,has
separated from each other by at least 30 minutes, and yield¢lde minimum number of turns.
total of over 300 trajectories in forecast weather. Eighislets ~ This problem is modeled by the IP below, which is a slight
were created, corresponding to the 10-, 30-, 60-, and 9@#minmodification to the shortest path problem. This problem ligesb
time horizons for both departures and arrivals. for each of the selected routes in the data set; the infdiagibi



of the problem implies that the route is blocked in the obsérv fo P#th Fx Spe” AC‘-O/OPE” %éCt-OOPer %éCt-Clc'OSgC
weather grid, feasibility implies that the route is conséteopen. e (58) (7;) | e | o
A version of this probI(_em can be also be solved with different § 30| 408| 51 77 96 42
sets of sources and sinks to generate a large set of candidate | /60| 384| 56 77 92 41
paths for a given weather forecast scenario [14]. Furtheemo " ?8 igg gg ;; gg 23
although the construction above models the case of arritrads 3 30| 408| 52 28 96 4
exact same IP can be used to model departures as well, as long § 60| 384| 53 78 94 40

as the underlying dynamic grid is changed. 0|90| 392| 60 77 90 43

Table 1:Overall dataset statistics for each of the 8 datasets. Fx Qbetual
o Open) refers to the percent of routes that are open in thedstéactual) weather
xij := flow on arc(i, j) € & grid. [Act. open| Fx Open] refers to the percentage of forecast open routeshwhi
e aie . . are open in the actual weather as well. [Act. clos&a closed] has the similar
Z4j = L1if (I’ J) € o/ is a tum0 otherwise connotation for closed routes.

decrease with increasing time horizon. Both of these tranels

closed are closed in the true weather less than 50% of the time
o across the board. These low rates reflect the effect of the add
Zj 2 Xij — z Xjk V(.)€ (2) tional flexibility allowed for finding routes in the actual ather.

min i z i A . Z 4 to be expected, because arrivals typically encounter thigebo
e (e ] neck at the end of their route through terminal airspace re&vhe
st ; Xi— Xj=bi Vies (1) the forecasts are less accurate. Finally, routes that ezedst as
jen: jEN:
(i,j)ess (ii)ee

ke(%g) Figure 6 contains examples of routes synthesized in thedste
' grid, along with the same routes validated against the obder
x€{0,1}" (3) weather.
ze {0,1}" 4) The raw data suggest that subject to minor adjustments; plan

) ) ) ning at a 10-, 30-, 60-, and 90-minute time horizon is quite re
Constraints (1) are the flow balance constraints, With= —1  gonapie as routes that are forecast to be open end up baing ov

fora supersource”, bj := +1 for a supersink7, andb; := 0 for - \yheimingly so. This is encouraging, and shows that allowing

all other nodes in .#". Constraints (2) in conjunction with the€gy e small adjustments from fixed arrival routes can imptbee
penalty term in the objective function serve to minimizertien-

) v - . quality of decision-making based on the forecast. The et s
ber of turns in the path without changing the path lengthcesinong explore how we can learn more from these data sets, and
it is desirable that aircraft trajectories have a limitednter of poiar predict blockage based on the forecast data.

turns for simplicity. All arcs that follow(i, j), except(j,k) for
k= NX(i, ), pay a penalty in the objective functioa. is cho- IV. FEATURE SELECTION
sen to be sufficiently small (less than the maximum lengtmgf a

path) to ensure that a longer route with fewer trns is neve Cterminal-area is available, it is interesting to identihacacteris-

Sen. Fmally,x. andz are blnary variables becagse a.smglle Pafids of the convective forecast which may best reflect thelilik
cannot be split up, and the existence of aturnis a bmarytgualhood that a trajectory will be unblocked in the observed tvesat

Once a dataset of routes through the weather-constrained

D. Dataset Details

o . A. Potential features of interest
The overall statistics of the _route bI(_)ckage datgsetsfma_ds . For each path, ten features of interest were indentified and
and departures at the four time horizons studied are lisied

each feature was correlated with route blockage. The téurkes

Tab_le_l. Each dataset contains approximately 400 routes, fine forecast weather, chosen for their possible cofoglatith
majority of which are open. The percentages of open forecaﬁhe blockage, are listed below:
t ’ '

routes (routes which do not pass through Level 3+ weathéein
dynamic forecast grid) are between 50 and 60 percent for both Mean VIL along the path

arrivals and departures, meaning that approximately Hali® 2 Standard Deviation of VIL along the path

routes in the dataset are forecast to be blocked. Howeveseth 3 Minimum distance to level 3+ weather along the path
same routes are open roughly 77% of the time in the weathe4 Mean distance to level 3+ weather along the path

that materializes (that is, there is a route in the neighbodrof 5 Maximum VIL in neighborhood of the path

the original path which does not pass through Level 3+ weatheg Theoretical capacity for the weather scenario

in the dynamic observed weather grid). The last two columns7 Number of segments in the minimum cut

indicate how the forecasts and true weather differ for itdiv. 8 Length of the minimum cut segment (bottleneck) that the
ual routes. Routes that are forecast as open are overwlgymin  path passes through

open in the observed weather grid, with rates of 86% and above® Length of tightest bottleneck

Arrivals have slightly lower rates than departures, andrétes 10 Maximum density of L3+ weather along path



Figure 6:Sample routes in a dynamic forecast grid are on the left-liahenn, and the corresponding routes in the actual weatkesrathe right-hand column.
The top weather scenario is an arrival route from June 8, 20Q730hrs with a 60-minute time horizon, and depicts aimavhere the route that is open according
to the forecast ends up open in the actual weather that ml@#ed. The middle scenario is an arrival route from June20®7 at 1930hrs with a 30-minute time
horizon. In this situation, the forecast route is not opethim observed weather grid. The bottom one shows a departureJuly 7, 2007 at 1930hrs with a
90-minute time horizon. The precise forecast route is lddckccording to the forecast, but a nearby route is availalitee true weather grid.



The first 4 features are reasonably self-explanatory, bt their time through the terminal area. Features 1, 2 and 10 con
others require some explanation. Feature 5 is the maximum \gistently have the highest Ml scores, while features 6 analvé h
forecast in the neighborhood of radiBsalong the path, wherethe lowest.

B is the same as in the integer program in Section Il. Feature§he above analysis provides a better understanding of how
6,7, and 8 refer to the theoretical capacity of the forecast gwell the features of a convective weather forecast correldth
and the corresponding minimum cut, and are computed usingte blockage. In the next section, the selected featuitebav
continuous max flow theory and the techniques describedrin [ised to predict robust routes, though the use of methods from
11]. Feature 9 contains the length of the minimum bottleneeiachine learning.
through which the route passes. Finally, Feature 10 is meant
to indicate the intensity of the weather in the neighborhobd V. CLASSIFICATION
the route. Itis computed by takingBakm neighborhood of the  In this section, using the route data set described in sextio
route, and finding the strip of pixels perpendicular to theteo Il and IV, techniques from machine learning are adaptectte b
with the largest percentage of Level 3+ forecast pixels.héf tter predict the possibility of route blockage in actual vheat
route is forecast to pass through Level 3+ weather, Fea8i€esSpecifically, a classifier is trained to predict, given thattees
will be 0, but Feature 10 may still contain pertinent infotioa  of a route in forecast weather, whether the route will be apen
about the nature of the weather through which the route passblocked in the actual weather that materializes. This jetii

) is also associated with a probability, which is determingdhe
B. Feature selection performance metrics of the classifier.

Previous work by the authors computed the simple correla-
tions for each feature with blockage, giving smooth estemaf A. Training objectives
the probability of blockage at each feature level [14]. Talev When evaluating a classifier, the class predications are com
uate features for classification and gain a better undetistgn pared with the actual classes of a test set, according tddhe s
of which features best correlate with blockage individgalle dardtwo-class confusion matrix
compute the Mutual Information between each fea¥jand the i i
blockage labey (+1 for open, -1 for blocked). | | Predicted Open | Predicted Blocked |

Mutual information is an information-theoretic measur¢hef | Actual Open || TP (True Positive)| FN (False Negative
dependence between two random variatdeandY, and mea- | Actual Blocked|| FP (False Positive) TN (True Negative)
sures how much the uncertaintyXfis reduced ifY is observed. I _ _ .
Note that this measure considers each feature individaaty Although it is typically desirable to maximize the accuracy

does not capture situations in which two random variabIaasx;—co(tOtal correctly predicted items) of a classifier on a tetf #e

bined correlate very well witly. For discrete random variableszett'(;]g dOf atV|at|c;ntweather warrt a.nts a m(_)dmedt O?J?Ct'\gh lt
X andY, their mutual informationl|,[X;Y], can be expressed as eed, due fo salely concerns, 1t 1S more important to cayrec

predict a route that ends up blocked than one that ends up open
_ P(X,y) This emphasis on correctly predicting members of the bldcke
HX:Y] = Z( P(xy) kmm class (minimizing false positives) is complicated by thet faat
XeRYE the dataset is imbalanced, having fewer blocked exampées th
To compute mutual information, it is necessary to have acc€9en, making it inherently harder to perform well on the nino
to the density functions for the corresponding random wéeim ity class.
When the dataset size is much larger than the range size of tH8 addition to the FP and FN rate, we compute the follow-
joint p.d.fFx y, we can choose the Maximum Likelihood paranitd (standard) performance metrics to the evaluate ousitiess
eter estimates of the p.d.f.s as good approximations. Eaake @ = %fpp. al = %' g-mean =va~ *at, and accuracy
of continuous random variables, the data are discretizerdry = 125, wheren is the total number of routes in the data set.
ing points intok equally sized bins. We note that there are othar (also known as recall) is a measure of how well the classifier
approaches to approximating Ml for continuous distribagidn- performs on members of the blocked (minority) class. We will
volving setting bin sizes so that the data points are equiidly seek to maximize this value through classification.
tributed between the bins, which is a better approximatdrue N
entropy [18, 19]; however, for simplicity, these methodsaot B- Two ensemble classifiers
adopted here. The Machine Learning literature has shown that ensemble
Figure 7 contains a comparison of mutual information (Mtlassifiers tend to perform well on imbalanced datasetfesut
across features and time horizons for both departure aidlarforming non-ensemble methods[20, 21]. We trained two clas-
datasets. It is seen that MI decreases overall as the time haifiers using the R language for statistical computing alitrey
zon increases, which reflects the decreased forecast agaitralines of [22]: an Ensemble of Support Vector Machines (En-
longer time horizons. In addition, departures have slighither sSVM), and a weighted random forest (WRF). This section de-
MI than arrivals across the board, which can be explainethby scribes the training process.
fact (also discussed in Section Il.D) that departuresretite  For both classifiers, we created identical training anddett
bottleneck of their path (close to the inner circle) at thatstf sets from each base route dataset. We partitioned the basetla
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Figure 7:Comparison of mutual information values across featurestiame horizons for both arrivals (left) and departureshig

randomly so that the training set had 70% of instances, aad &matching cost to accuracy. At 90-minutes, the improvenment
test set 30%, making sure that weather scenarios from the sagcall rate is close to 10%, with a cost to accuracy of 13%.
date were not split up, so as not to introduce bias. The trgini Thus EnsSVM is successful in combining the features of a
set was then further processed when setting up the ensemblgiven weather scenario and using them to predict route higek
blocked instances of the training set were set asideNabdot- with higher recall rates than the weather forecast. Thisetese
strap samples of size were created from the open instancef the false positive rate comes at an expected tradeoffagith-
The blocked set was then combined with each of the bootstrapy, due to the conservative objective function we placethe
samples to creatld training bootstrap training sets. This waylearning algorithm, and the imbalance between open andétbc
each of theN bootstrap sets had a balance between open aodtes.
blocked instances.

TheseN bootstrap samples were then used to train the thlo Results for the weighted random forest

types of classifiers. EnsSVM was trained with an RBF kernel,The performance of the WRF classifier is similar to that of
and 5-fold cross validation was used to tune the parameltbes. EnsSvM, as it is successful in learning from the featurese p
WREF was trained using the rpart package for R [23] for a larggst blocked routes, at a cost to overall accuracy. Althotigh
set of weights, where a higher weight increases the penaity 4ssociated metrics are omitted due to space constraietexth

missclassifying blocked examples. plicit penalty on misclassifying blocked routes in the WRiF (
In both cases, the resulting ensemble classifier uses tt-mahe form of a weight in the training loss function), provices
ity vote of the ensemble to classify new routes. illustration of the tradeoff between FP rate and accuracy.
Figure 8 depicts this relationship for the 10- and 90-minute
C. Results for Ensemble SVM time horizons. A diagonal trend is evident between the F@ rat

Table 2 shows the results for the ensemble SVM classifier@ad the accuracy rate of the WRF. The color of each point rep-
all four time horizons of interest, for both arrivals and depres. resents the size of the weights in the training function, tred
All metrics shown are the average of 5 runs of the classifier (ellipses indicate approximately where points of variouggives
independently generated test/training sets), to accauntdri- tend to be located. Points associated with a lower weiglat tien
ability in training. be in the top right (higher FP rate and accuracy), while sast
The table illustrates two major trends. At the shortest ting@ciated with a lower weight tend to be in the bottom left @ow
horizons of 10- and 30-minutes, the ensemble does not $i§-rate and accuracy).
nificantly improve the performance of the forecast on blacke »
routes, since the recall rates( of the clasifier and forecast aré=  TW0 more classifiers
very close together. This is not surprising since at thesetsh Two additional classifiers were trained on the route bloekag
time horizons, there is very little room for improvementddhe data set, in order to validate the results above and comgtre w
weather forecasts are known to be more accurate. other classification methods. EnsSVM and WRF outperformed
There is clear improvement in the recall rate of the clagsifi@em in terms of maximizing recall. Due to space constraigts
at 60- and 90- minute time horizons. Arrivals at 60-minutestp only include brief descriptions and summaries of results.
a 3.5% improvement in recall rate over the weather foreeast, We trained (regular) SVMs using two different data sets. The



10-min 30-min 60-min 90-min
EnSVM [ Fx EnSVM [ Fx EnSVM [ Fx EnSVM [ Fx
Acc 70.168 | 69.252 || 66.600 | 67.966 || 67.640 | 71.134|| 58.620 | 71.592
k%) a 98.674 | 98.148 5.326 | 87.144| 89.562 | 86.122|| 73.652 | 63.672
_g at 63.524 | 62.792|| 58.584 | 60.376| 60.906 | 66.616|| 54.540 | 72.728
5: g-mean|| 0.792 | 0.782 0.694 | 0.718 0.738 | 0.760 0.596 | 0.676
% TP 51.660 | 50.908|| 45.322 | 46.490|| 46.630 | 50.972|| 47.016 | 61.772
% FP 0.344 | 0.512 2.506 | 2.314 2.506 | 3.356 3.424 | 5.214
% TN 18.510 | 18.344|| 21.282 | 21.474| 21.008 | 20.158|| 11.608 | 9.818
% FN 29.488 | 30.238|| 30.890 | 29.720|| 29.854 | 25.512| 37.956 | 23.198
Acc 77.986 | 76.806|| 69.454 | 69.620| 63.776 | 69.102|| 60.574 | 71.538
® a- 92.110 | 92.110|| 93.640 | 91.530| 83.026 | 80.640|| 83.994 | 71.132
g at 73.786 | 72.414|| 61.132 | 62.312| 57.824 | 65.468|| 54.454 | 70.970
%‘ g-mean 0.822 0.816 0.750 0.754 0.676 0.722 0.658 0.708
oy % TP 59.320 | 58.142|| 47.544 | 48.324| 47.724 | 53.596|| 42.108 | 55.326
[a % FP 1.434 1.434 1.274 1.892 2.712 3.260 3.890 6.144
% TN 18.666 | 18.666 || 21.910 | 21.292|| 16.054 | 15.504 | 18.466 | 16.210
% FN 20.580 | 21.756|| 29.274 | 28.492 | 33.510 | 27.636|| 35.536 | 22.318

Table 2:Results for (the average of 5 runs of) the Ensemble SVM ¢lasgior arrivals and departures

Tradeoff between accuracy and false positive rate:

Tradeoff between accuracy and false positive rate: 90-min horizon
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Figure 8: Comparison of false positive and accuracy rates of the weigrandom forest classifier over several iterations witighteWt, for 10-min (left) and
90-min (right) time horizons. In general, a lower false tiesirate is accompanied by lower accuracy (bottom leftmegiand higher weight (penalty against false
positives) generally results in a classifier with lower Féra

first was a simple (imbalanced) partition of the base dataset learn from the features set to detect false positives.
a training and test set. The second oversampled the minority
class to produce a balanced dataset. An SVM with an RBF kernal
was trained on each data set using 5-fold cross validatiopio
timize for recall. A separate classifier was trained on maiy s
sets of features, and feature combinations were selectstiba )
on mutual information and by balancing different featurpety | "€ route blockage model can be used to create a stochastic
(features related to the weather grid such as theoretipaloity, model of capacity. This sectlpn presents an |_n|t|al vgramych

and features related to the specific route such as mean Viigal@ M°del, for the case of arrivals. For an airport witharrival

the route). However, both data sets resulted in classifitts vgates (in the case of ATlm = 4), and for a given time horizon

very high FP rates, though they also had higher accuracy rdge W€ can forecast capacity in the following way. First, four
than the forecast. routes are sampled, each sourced from a different quaditre o

outer circleCo through the forecast grid. Next, the classification
A decision tree was trained on an imbalanced data set. In@mor rates of EnsSVM (Tables 2) can be used to represent the
der to maximize the recall rate, a weighted loss functionwsasl the probability that the route will be blocked in the true e
just like for the WRF. Even with a high penalty for missclassgrid given the EnsSVM prediction. L& be the clear-weather
fying the blocked class, the resulting classifier had veghti#P capacity of the airspace. Then the capacity of the the aiespan
rates, though once again they had higher accuracy ratesttbare forecast a%nk with probability Pr( exactlk of the synthesized
forecast. Just like for SVMs, the classifiers failed to dffedy routes are open), which will be a binomial distribution.

CAPACITY FORECASTS FROM PREDICTIONS OF ROUTE
BLOCKAGE
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